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Abstract. A new approach to global QCD analysis is developed. The main ingredients are two QCD-based
evolution equations. The first one is the Balitsky–Kovchegov non-linear equation, which sums higher twists
while preserving unitarity. The second equation is linear and it is responsible for the correct short distance
behavior of the theory, namely it includes the DGLAP kernel. Our approach allows for extrapolation of the
parton distributions to the very high energies available at the LHC as well as very low photon virtualities,
Q2 � 1 GeV2.
All existing low x data on the F2 structure function are reproduced using two fitting parameters, the other
parameters were taken as constants. The result is χ2/df = 1.
Analyzing the parameter λ ≡ ∂ ln F2/∂(ln 1/x) at very low x and Q2 well below 1 GeV2 we find λ � 0.08–
0.1. This is a result which agrees with the “soft pomeron” intercept without involving soft physics.

1 Introduction

In the paper of [1] a new approach to DIS was proposed. In
the present paper we review and further develop the ideas
introduced in [1]. Our main result is that all existing low
x data on the F2 structure function can be described by
a non-linear QCD evolution.

The standard perturbative QCD approach to deep in-
elastic scattering (DIS) is based on the DGLAP evolution
equation [2] which provides the leading twist parton dis-
tributions. The main underlying assumption is that the
high twist contributions are negligibly small if the evolu-
tion starts at sufficiently high photon virtualities: Q2

0 ≈ 2–
4 GeV2.

The approach based on the DGALP equation suffers
from three principal problems.
(1) The DGLAP evolution predicts a steep growth of the
parton distributions in the region of low x which would
eventually contradict the unitarity constraints [3]. Hence,
we can expect large unitarity corrections to the DGLAP
evolution equation, in the region of very low x.
(2) The second problem is the general nature for any op-
erator product expansion which is an asymptotic series. In
the application to DIS this means that the errors associ-
ated with the leading twist approximation are not small.
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They are of the order of the next to leading order twist
contribution which grows very fast at low x. In fact, it
can be shown that high twist contributions grow with de-
creasing x faster than the leading twist [4]. Hence, we can-
not conclude that the higher twist contributions are small
in the whole kinematic region, even if they are small for
the initial value of Q2 = Q2

0. The estimates of [5] show
that all available parameterizations of the solutions to
the DGLAP evolution equation lead to substantial higher
twist contributions.
(3) The last problem is that the DGLAP equation too is
not able to describe the physics of low photon virtuality
Q2 ≤ 1 GeV2. For these kinematics one needs to use Regge
phenomenology or other phenomenological models.

It is important to add that NLO DGLAP, though it
improves the fits to the presently available data, does not
solve any of the above principal difficulties. Consequently,
we are lead to the conclusion that DGLAP is insufficient
to describe the whole kinematical phase space. For small
values of x and/or Q2 there is need for a new QCD-based
idea.

In this paper, we develop such an idea, which allows
us to extrapolate parton distributions to very low x (high
energies). An extrapolation of the available parton distri-
bution to the region of lower x is a practical problem for
the LHC energies. We need to know the parton distribu-
tion both for estimates of the background of all interesting
processes at the LHC, such as Higgs production, and for
the calculation of the cross sections of the rare processes
which are likely to be measured at the LHC.
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Our method was originally proposed in [1]. It consists
of two steps. As a first step, a non-linear evolution equa-
tion, which takes into account the most significant higher
twist contributions, is solved. This equation, (2.1), speci-
fies a high energy (low x) behavior of the parton densities.
The solution obtained, below denoted as Ñ , takes into ac-
count collective phenomena of high parton density QCD
and respects the unitarity constraints. Moreover, Ñ can
be found for large transverse distances, so it also provides
a possibility to describe the data of low photon virtuality.

The parton distributions which we obtain are then
amended by adding to the solution of the non-linear equa-
tion Ñ a correcting function ∆N , which is aimed at cor-
rectly incorporating the short distance behavior of the the-
ory, namely the DGLAP kernel.

For ∆N we propose a linear DGLAP-type evolution
equation. The function ∆N is considered to be a small
correction to Ñ concentrated in the region of moderate x.
Consequently, this function should be free of all difficulties
inherent in the usual solutions of the DGLAP equation.

The philosophy of our approach is quite similar to the
one recently presented by [6]. That paper is a development
of the Golec-Biernat–Wusthoff (GBW) model which in ad-
dition to the original model [7] is improved by DGLAP
evolution. We can trace a certain analogy between our
function Ñ and the original saturation model. Both func-
tions play the very same role: they take into account the
gluon saturation effects in a unitarity preserving way, and
describe the physics of large distances. However, contrary
to the saturation model the function Ñ is derived from
QCD. The DGLAP improvement both in our approach
and in [6] is aimed at correctly incorporating the short
distance dynamics; however, the technical realizations are
quite different.

This paper is organized as follows. In the next section
we review our approach and write the BK non-linear equa-
tion for Ñ and a linear equation for∆N . Section 3 presents
some analytical estimates of the corrections induced by
the DGLAP kernel. Section 4 is devoted to technical de-
tails of the numerical solutions of the equations. Section 5
presents our fit to the experimental data on the F2 struc-
ture function and its logarithmic derivatives. Some predic-
tions for THERA and LHC are given. Section 6 presents a
general discussion which emphasizes some weak points of
our approach. In the concluding section, Sect. 7, we sum-
marize our results and mention our plans for future work.

2 Reviewing a new approach to DIS

The DGLAP equation describes the gluon radiation which
leads to a strong increase in the number of partons. How-
ever, when the parton density becomes large, annihilation
processes become important and they suppress the gluon
radiation taming the rapid growth of the parton density
[3,8,9]. A development of new theoretical methods appli-
cable to the physics of high density QCD [3,8–14] leads
finally to the very same non-linear evolution equation as

nowadays credited to Balitsky and Kovchegov (BK)1:

Ñ(x01, Y ; b) = Ñ(x01, Y0; b)

× exp
[
−2CFαS

π
ln
(

x2
01

ρ2

)
(Y − Y0)

]

+
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π
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(
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)
(Y − y)

]

×
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d2x2
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x2
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2
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(
2Ñ
(
x02, y;b − 1

2
x12

)
(2.1)

− Ñ

(
x02, y;b − 1

2
x12

)
Ñ

(
x12, y;b − 1

2
x02

))
.

The equation is derived for Ñ(r⊥, x; b), which stands for
the imaginary part of the amplitude of a dipole of size r⊥
elastically scattered at the impact parameter b.

In (2.1), the rapidity Y = − lnx, and Y0 = − lnx0. The
ultraviolet cutoff ρ is needed to regularize the integral, but
it does not appear in the physical quantities. In the large
Nc limit (number of colors) CF = Nc/2 (we set Nc = 3 in
the numerical computations).

Equation (2.1) has a very simple meaning: the dipole
of size x10 decays in two dipoles of sizes x12 and x02
with the decay probability given by the wave function
|Ψ |2 = x2

01/(x
2
02x

2
12). These two dipoles then interact with

the target. The non-linear term takes into account a si-
multaneous interaction of two produced dipoles with the
target or, in other words, the Glauber corrections for the
dipole–target interaction.

The linear part of (2.1) is the LO BFKL equation [17],
which describes the evolution of the multiplicity of the
fixed size color dipoles with respect to the energy Y . The
non-linear term corresponds to a dipole splitting into two
dipoles and it sums the high twist contributions. Note
that the linear part of (2.1) (the BFKL equation) also has
higher twist contributions, and vice versa, the main con-
tribution of the non-linear part is to the leading twist (see
[8] for general arguments and [5] for explicit calculations).

As has been mentioned, the master equation (2.1) is
derived in the leading ln(1/x) approximation of perturba-
tive QCD. This means that we consider αS ln(1/x) ≈ 1
while αS � 1 as well as αS lnQ2 � 1. In other words, the
equation sums all contributions of the order (αS ln(1/x))n

and neglects contributions of the orders αS(αS ln(1/x))n

and αS lnQ2(αS ln(1/x))n. Contributions of the latter will

1 Equation (2.1) was originally proposed by Gribov, Levin
and Ryskin [3] in momentum space and proven in the dou-
ble log approximation of perturbative QCD by Mueller and
Qiu [8]. In the leading ln 1/x approximation it was derived by
Balitsky in his Wilson loop operator expansion [12]. In the
form presented in (2.1) it was obtained by Kovchegov [13]
in the color dipole approach [15] to high energy scattering in
QCD. This equation was also obtained by summation of the
BFKL pomeron fan diagrams by Braun [16] and in the effective
Lagrangian approach for high parton density QCD by Iancu,
Leonidov and McLerran [14]. Therefore, it provides a reliable
technique for an extrapolation of the parton distributions to
the region of low x
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be taken into account by the function ∆N to be discussed
below.

Equation (2.1) sums all diagrams of the order(
α2

S(1/x)∆
)n

with ∆ ∝ αS.

This means that starting from αS ln(1/x) ≈ ln(1/αS),
corrections due to rescattering and recombination of the
parton become essential (see [18] for details).

The next to leading corrections to the DGLAP or/and
BFKL equations lead to ∆ = C1αS + C2α

2
S which start

to be important only for αS ln(1/x) ≥ 1/αS. Therefore,
the correct strategy is first to solve the master equation
taking into account all corrections of the leading order,
and only as a second step consider the next to leading
order corrections.

It is well known since Bartel’s paper in [4] that (2.1)
can be proven in the large Nc limit of QCD. Actually, this
equation is a first theoretical realization of the Veniziano
topological expansion [19]. For Nc � 1, we assume that
ᾱs = NcαS/π ≈ 1 while αS � 1. An interesting feature
of the equation is that it depends on ᾱS only, and all
problems with the accuracy of the large Nc expansion are
really concentrated in the Nc dependence of the initial
distributions (see [18] for details).

It should be stressed that a correct evolution equation
without an additional assumption on large Nc is known
(see Weigert’s paper in [11]). However, this equation is so
complicated that we are far away from finding its solution.
However, it is worthwhile mentioning that in the simpli-
fied case of the double log approach (both αS ln(1/x) and
αS lnQ2 are of the order unity while αS � 1) the equation
for Nc ≈ 1 was written and solved in [20]. This solution
shows that corrections to the large Nc approximation are
rather small and, therefore, at the first stage it is reason-
able to neglect them.

In order to safely use (2.1) we need to estimate the
neglected contributions. A first class of such contributions
is the interaction between two parton showers which leads
to (ᾱS/N

2
c ) ln(1/x) corrections which result in a bound on

minimal x:

ln(1/x) ≤ N2
c

ᾱS
.

A second constraint comes from the so-called enhanced
diagrams. It turns out that they lead to the very same
restrictions as the previous one (see [18] for details).

The above energy limit is not very essential since the
unitarity bound Ñ = 1 is reached at higher values of x.
Thus the 1/Nc corrections cannot modify this result, but
could slightly modify the value of the saturation scale.

The total dipole cross section is given by the integra-
tion over the impact parameter:

σdipole(r⊥, x) = 2
∫

d2bÑ(r⊥, x; b). (2.2)

The contribution to the deep inelastic structure function
F2 which is due to Ñ we denote by F̃2 and it is related to
the dipole cross section

F̃2(x,Q2) =
Q2

4π2

∫
d2r⊥

∫
dzP γ∗

(Q2; r⊥, z)

×σdipole(r⊥, x). (2.3)

The physical interpretation of (2.3) is transparent. It de-
scribes the two stages of DIS [21]. The first stage is the
decay of a virtual photon into a colorless dipole (qq̄ -pair).
The probability of this decay is given by P γ∗

. The sec-
ond stage is the interaction of the dipole with the target
(σdipole in (2.3)). This equation is a simple manifestation
of the fact that color dipoles are the correct degrees of
freedom in QCD at high energies [15]. The QED wave
functions of the virtual photon are well known [15,22,23]
(we consider only the massless case):

P γ∗
(Q2; r⊥, z)2 =

Nc

2π2

∑
f

Z2
f

×
{

(z2 + (1 − z)2)a2K2
1 (ar⊥)

+ 4Q2z2(1 − z)2K2
0 (ar⊥)

}
, (2.4)

with a2 = Q2z(1 − z).
It can be seen that (2.1) does not depend explicitly on

the target2. The whole dependence on the target comes
from the initial condition specified at some initial value
x0. For a target nucleus it was argued in [13] that the
initial conditions should be taken in the Glauber form:

Ñ(x01, x0; b) = NGM(x01, x0; b), (2.5)

with

NGM(x01, x; b)

= 1 − exp
[
−αSπx2

01

2NcR2 xG
DGLAP(x, 4/x2

01)S(b)
]
. (2.6)

Equation (2.6) represents the Glauber–Mueller (GM) for-
mula which accounts for the multiple dipole–target inter-
action in the eikonal approximation [22,24,25]. The func-
tion S(b) is a dipole profile function inside the target. The
value of x0 is chosen within the interval

exp
(

− 1
αS

)
≤ x0 ≤ 1

2mR
, (2.7)

where R is the radius of the target. In this region the value
of x0 is small enough to use the low x approximation,
but the production of the gluons (color dipoles) is still
suppressed as αS ln(1/x) ≤ 1. Consequently, in this region
we have the instantaneous exchange of the classical gluon
fields. Hence, an incoming color dipole interacts separately
with each nucleon in a nucleus (see Mueller and Kovchegov
in [10]).

For the hadron, however, there is no proof that (2.5) is
correct. Our criterion in this problem (at the moment) is
the correct description of the experimental data. Almost
all available HERA data can be described using (2.5) [26,

2 This independence is a direct indication that the equation
is correct for all targets (hadron and nuclei) in the regime of
high parton density
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27], and we feel confident setting (2.5) as an initial condi-
tion for (2.1). In our model, the Gaussian (S(b) = e−b2/R2

)
form for the profile function of the hadron is mostly used.
The parameter R is a phenomenological input, while the
gluon density xGDGLAP is a solution of the DGLAP equa-
tion. For a hadron target (2.7) is still correct, but prac-
tically x0 = 10−2 is chosen. This value satisfies (2.7) for
which many experimental data exist, so one can check the
initial conditions.

Solutions to the BK equation were studied in asymp-
totic limits in [28] while several numerical solutions were
reported in [16,1,29–31]. In [1] and in the present paper
we solve (2.1) in the coordinate representation in which
the initial conditions are of a very simple form (see (2.5)).
The second reason for using the coordinate representation
is the fact that all physical observables can be expressed in
terms of the amplitude for the dipole–target interaction in
the coordinate representation. Finally, it is also very useful
that the long distance asymptotics is known: Ñ → 1 being
Ñ ≤ 1 otherwise. This fact provides a natural control for
the numerical procedure.

Unfortunately, (2.1) is an approximation. It only sums
large lnx contributions. The situation can be improved at
short distances. The exact x dependence of the kernel at
short distances is known, namely it is the DGLAP ker-
nel. An attempt to obtain the elastic amplitude Ñ based
on elements of both the BK and DGLAP equations was
presented in [32]. The authors of this paper first solve a
generalized DGLAP-BFKL linear equation [33], and then
add to the solution a non-linear perturbation of the form
presented in (2.1). This approach actually incorporates
the high twist contributions in the standard way, treating
them as corrections to the leading one.

We suggest a different approach to the problem. First,
all twist contributions should be summed by solving (2.1).
Secondly, we add to the solution obtained a correcting
function ∆N , which accounts for the DGLAP kernel
(Fig. 1):

N = Ñ +∆N for x ≤ x0. (2.8)

The main idea behind the separation (2.8) can easily
be explained. The function Ñ (2.1) sums leading ln 1/x
effects. However, it takes into account only the 1/z part
of the gluon–gluon splitting function (2.10). We would like
to account for the rest of the splitting function. This in-
formation is included in ∆N . To achieve this goal we first
propose an equation for N , see (2.9), which is valid in the
single leading logarithm ln 1/r2⊥. We then substract from
this equation everything which is included in Ñ . The re-
sult will be an equation for ∆N (2.12).

We denote by Ñ(r⊥, x) the solution of (2.1) at b = 0.
Unfortunately, it is complicated to find a solution for an
arbitrary value of the impact parameter b. We simplify
the problem by solving (2.1) without including the b de-
pendence; this corresponds to the case of solving it for the
initial condition at b = 0. At the very end we restore the b
dependence by using an ansatz to be discussed in Sect. 4.

In order to extract the leading ln(1/r2⊥) contributions
we define a set of new functions:

BK (evolution for N)

DGLAPN

N = 0

BK

r

1/x

r

x
N = 0

∆

0

N = N +      N N = N

0

∆

∆

evolution for      N∆

Fig. 1. The kinematic map for the solutions

ñ ≡ Ñ/(αsr
2
⊥); n ≡ N/(αsr

2
⊥); ∆n ≡ ∆N/(αsr

2
⊥).

For the function n we propose the following non-linear
equation assumed to be valid in the leading large ln(1/r2⊥)
approximation:

∂n(r⊥, x)
∂ ln(1/r2⊥)

=
CFαs

π

∫ 1

x

Pg→g(z)n
(
r⊥,

x

z

)
dz

− CFα
2
sr

2
⊥

π

∫ 1

x/x0

dz
z
n2
(
r⊥,

x

z

)
. (2.9)

Here Pg→g(z) stands for the usual gluon splitting func-
tion:

Pg→g(z) = 2
[
1 − z

z
+

z

(1 − z)+
+ z(1 − z)

+
(

11
12

− nf

18

)
δ(1 − z)

]
. (2.10)

Let us explain a few simple ideas which lead us to pro-
pose (2.9). At small r⊥, the BK equation matches the
non-linear GLR equation for the gluon distribution at
small x < x0. This is a double logarithmic approximation.
Equation (2.9) is an alternate form for a single ln(1/r2⊥)
approximation for the GLR equation. It matches correctly
with the linear DGLAP equation, as well as with the GLR
equation in the DLA. Note that in (2.9) we assume non-
linear effects to be of no importance for x > x0. Thus,
all the DGLAP corrections which we seek can be found
in the difference between (2.9) and (2.1). Note that this
procedure eliminates any possible double counting.

Equation (2.1) can be rewritten in the large ln(1/r2⊥)
approximation as:

∂ñ(r⊥, x)
∂ ln(1/r2⊥)

=
∂ñ(r⊥, x0)
∂ ln(1/r2⊥)

+ 2
CFαs

π

∫ 1

x

dz
z
ñ
(
r⊥,

x

z

)

− CFα
2
sr

2
⊥

π

∫ 1

x/x0

dz
z
ñ2
(
r⊥,

x

z

)
. (2.11)



E. Gotsman et al.: Towards a new global QCD analysis: low x DIS data from non-linear evolution 415

Subtracting (2.11) from (2.9) and assuming ∆N to
be small compared to Ñ , we derive the equation for
∆n(r⊥, x):

∂∆n(r⊥, x)
∂ ln(1/r2⊥)

=
CFαS

π

∫ 1

x/x0

Pg→g(z)∆n
(
r⊥,

x

z

)
dz

− 2CFαs

π

∫ 1

x/x0

dz
z
Ñ
(
r⊥,

x

z

)
∆n

(
r⊥,

x

z

)
(2.12)

+
CFαs

π

∫ 1

x/x0

(
Pg→g(z) − 2

z

)
ñ
(
r⊥,

x

z

)
dz

− ∂ñ(r⊥, x0)
∂ ln(1/r2⊥)

+
CFαs

π

∫ x/x0−

x

Pg→g(z)n
(
r⊥,

x

z

)
dz.

Equation (2.12) is a linear equation valid in the leading
ln(1/r2⊥) approximation. The first term on the right hand
side of (2.12) is the DGLAP evolution for the correcting
function ∆N , while the second term is the “non-linear in-
teraction” of the solutions. The third term in the equation
represents the correction which is due to the substitution
of the BFKL kernel 1/z by the correct DGLAP kernel.

The last term in (2.12) is the only term which accounts
for the contribution of high x > x0. In that region the
function n = πxGDGLAP/(2NcR

2) being a solution of the
DGLAP equation is not given by a sum of ñ and ∆n.
The sign “−” in the upper integration limit indicates that
in the limit x → x0 the δ function term of the splitting
function must be excluded.

If we set Ñ = 0 then (2.12) reduces exactly to the
gluonic part of the leading order DGLAP equation. In a
planned further development of our approach quark dis-
tributions and their evolution will also be included. At the
present stage we take them into account implicitly in αs
and by setting nf = 3 in Pg→g.

The last two terms in (2.12) were omitted in [1] as
they are not important at low x. However, they should be
included for complete computations.

The initial condition

∆N(r⊥0, x) = N(r⊥0, x) − Ñ(r⊥0, x)

is a phenomenological input at some initial transverse dis-
tance r⊥0 to be specified. However, our strategy is based
on the assumption that Ñ describes the long distance
physics correctly. Consequently, in order to eliminate any
discontinuity of the function N we require

∆N(r⊥0, x) = 0. (2.13)

The value of r⊥0 is not specified but it is expected to be
of the order 2 GeV−1 corresponding to the naive relation
Q2

0 = 4/r2⊥0 	 1 GeV2.
Since we assume Ñ(r⊥, x0) to correctly describe the

data at x = x0, the continuity across x = x0 supposes
that Ñ(r⊥, x0) = N(r⊥, x0). If we require this equality,
then (2.12) would respect it provided the initial condition
(2.13) is imposed.

It is important to emphasize that (2.12) is free from the
main problems of the DGLAP equation. First of all, the

high twist contributions are summed (at least partially)
by (2.1). Secondly, our method respects unitarity. This is
achieved due to the second term of (2.12) and the unitarity
preserving initial condition (2.13).

Finally it is necessary to compute a correction to the
F2 structure function due to ∆N . To achieve this goal we
need to assign an impact parameter dependence to ∆N .
Similarly to what is common in DGLAP solutions, the
b dependence is assumed to be a product of (2πR2)∆N
times a profile function. After b integration the latter con-
tributes unity. Then the correction to F2 reads

∆F2(x,Q2) =
4Nc

9π3

∫ r⊥0

4/Q2

dr2⊥
r4⊥

∆N(r⊥, x)(πR2). (2.14)

The r⊥ integration in (2.14) is evaluated in the same
large ln 1/r⊥ approximation as is valid for (2.12). Note
that the coefficient (πR2) is cancelled with the same factor
hidden in ∆N .

3 DGLAP correction – analytical estimates

In this section we would like to make some comments re-
garding the consistency of our approach. It was argued
previously that it is necessary to add a correction term
∆N to the solution Ñ of the non-linear equation (2.1),
where the function ∆N is a solution of the evolution equa-
tion (2.12).

Consistency of the approach requires the function ∆N
to give vanishing contributions to the dipole cross section
at very small x. We also expect this function to decrease
as r2⊥ decreases. Finally, ∆N is assumed to be a small
correction to the function Ñ . In order to check the above
conditions, some asymptotic estimates can be made with-
out explicitly solving (2.12). Indeed, we will show below
that (2.12) respects all the above mentioned requirements.
(1) Limit 1: fixed r⊥, x → 0.

At very small x and fixed distances the function Ñ 	 1.
Equation (2.12) can be simplified:

∂∆n(r⊥, x)
∂ ln(1/r2⊥)

=
CFαS

π

∫ 1

x/x0

(
Pg→g(z) − 2

z

)

×
(
ñ
(
r⊥,

x

z

)
+∆n

(
r⊥,

x

z

))
dz. (3.15)

The main observation is that the evolution kernel en-
tering the equation (3.15) is actually negative. Hence the
function ∆n decreases as r⊥ decreases.

Let us consider a model where the anomalous dimen-
sion has the form consistent with energy conservation [34]:

γ(ω) = ᾱS

(
1
ω

− 1
)
, (3.16)

where ᾱS ≡ αSNc/π and the anomalous dimension is de-
fined by the Mellin transform of the splitting function
Pg→g:

γ(ω) =
αSCF

π

∫ 1

0
dzPg→g(z)zω. (3.17)
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Equation (3.15) can be solved using the inverse Mellin
transform [1]. Define ∆n(r⊥, ω) and ñ(r⊥, ω) as the in-
verse Mellin transforms

∆n(r⊥, ω) ≡ 1
2πi

∫
C

dωx−ω∆n(r⊥, ω);

ñ(r⊥, ω) ≡ 1
2πi

∫
C

dωx−ωñ(r⊥, ω).

In the momentum representation (3.15) together with the
anomalous dimension (3.16) is

∂∆n(r⊥, ω)
∂ ln(1/r2⊥)

= −ᾱs[ñ(r⊥, ω) +∆n(r⊥, ω)]. (3.18)

Equation (3.18) can easily be integrated. Applying
again the approximation Ñ 	 1 we get the result for the
correcting function ∆N :

∆N(r⊥, x) 	 − ᾱS

1 + ᾱS
Ñ(r⊥, x) + C(x)(r2⊥)1+ᾱS . (3.19)

The function C(x) should be determined from the initial
condition ∆N(r⊥0, x) = 0. Consequently

∆N(r⊥, x) 	 − ᾱS

1 + ᾱS
(3.20)

×
[
Ñ(r⊥, x) − Ñ(r⊥0, x)(r2⊥/r

2
⊥0)

1+ᾱS

]
.

As expected the function ∆N is negative and of the
order O(αS) compared to Ñ . As r⊥ decreases, ∆N de-
creases until it reaches a minimum at r⊥min determined
by the equation

∂Ñ(r⊥, x)
∂r2⊥

∣∣∣∣∣
r⊥=r⊥min

	 (1 + ᾱS)Ñ(r⊥0, x)
(r2⊥)ᾱS

(r2⊥0)1+ᾱS
.

(3.21)
At shorter distances ∆N tends to 0 as it should.

Note that at fixed r⊥, ∆N is finite and non-vanishing
at x → 0. Yet, this is consistent with the requirement of a
vanishing contribution to the dipole cross section since the
latter implies integration over the impact parameter b. We
will assign different b dependences to the functions Ñ and
∆N . After the integration, the dipole cross section due to
Ñ will grow logarithmically with x, while the contribution
of ∆N will remain finite.
(2) Limit 2: fixed x, r⊥ → 0.

We would now like to address the question of the short
distance asymptotics. In this limit, the function Ñ is given
by the solution of the BFKL equation. Namely,

Ñ(r⊥, ω) ∼ eᾱS ln(1/r2
⊥)/ω. (3.22)

On the other hand, energy conservation (3.16) requires

N(r⊥, ω) ∼ eᾱS ln(1/r2
⊥)(1/ω−1).

Hence

∆N(r⊥, ω) 	 Ñ(r⊥, ω)(e−ᾱS ln(1/r2
⊥) − 1) → −Ñ(r⊥, ω).

(3.23)

Finally we conclude that the function ∆N is supposed
to be negative. We expect ∆N 	 βÑ with |β| < 1 and to
be approximately x independent. At short distances ∆N
tends to zero as Ñ .

Therefore, ∆N turns out to be small in the whole kine-
matic region. The analysis presented above justifies the
self-consistency of our approach and paves the way for the
numerical calculations to be presented in the next section.

4 Numerical solution of the equations

In this section we report on the exact numerical solution
of (2.1) with the initial condition (2.5) and of (2.12) with
the initial condition (2.13).

First of all we wish to discuss several technical details.
(1) Kinematic domain. The kinematic region where the
solutions of (2.1) and (2.12) are found, covers x values
from x = x0 = 10−2, where the initial conditions are
set, to x = 10−7. The maximal transverse distance r⊥ is
taken to be two fermi. The value of the ultraviolet cutoff ρ
is 2 × 10−3 GeV−1. The numerical solutions obtained are
checked and are independent of this choice.
(2) Coupling constant αS. Equation (2.1) is derived for
constant αS. However, the DGLAP equation and hence
(2.9) have a running coupling constant. Consequently, the
derivation of (2.12) implies the same running αS in (2.1).
For numerical purposes we take the LO running αS with
αS = αS(4/r2⊥) everywhere. At large distances we freeze
αS at the value αS 	 0.5.
(3) Transverse hadron size R2. In [1] the fixed value R2 =
10 GeV−2 was taken. This choice corresponds to the value
which is obtained from the “soft” high energy pheno-
menology [35,36], and is in agreement with the HERA
data on elastic J/Ψ photo-production [37]. As R2 is prac-
tically the only fitting parameter at our disposal we allow
it to vary in order to fit the F2 data. The optimal fit is
achieved at the value R2 	 3.1 GeV−2. This value appears
to be too small and requires our understanding. The phys-
ical meaning of such a small value will be considered in
the discussion below.
(4) Gluon density xGDGLAP. In our approach, the gluon
density xGDGLAP appears twice: first, in the initial condi-
tion (2.5) and, second, it accounts for the region x > x0 in
(2.12). At this stage, we do not solve the DGLAP equation
for the high x region. Instead, we rely on the existing par-
ton distributions. Practically for xGDGLAP(x ≥ x0, 4/r2⊥)
we use the LO CTEQ6 parametrization [38].
(5) Solution of (2.1). In [1] (2.1) was solved by the method
of iterations. In the present work we adopt another
method, which appears to be more efficient. Namely, we
solve (2.1) as an evolution equation in rapidity with a
fixed grid in r⊥ space and a dynamical step in Y . The re-
sults of the new program are in total agreement with the
old method of [1] provided the identical initial input is
used. The function Ñ is shown in Fig. 2 (solid curves). At
large distances, Ñ saturates to unity, which is the unitar-
ity bound. At short distances, Ñ tends to zero, indicating
color transparency.
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Fig. 2. The solution of (2.1) (solid line) and (2.12) (dashed line) plotted versus r⊥

(6) Large distances. It is of crucial importance for our
purposes to correctly determine Ñ at large transverse dis-
tances. However, the initial conditions (2.5) are not com-
putable at large distances. The gluon parameterization ap-
pearing in (2.5) ends at r⊥ 	 0.5 fm. A resolution of the
problem was suggested in [39]. The function Ñ possesses
a property called geometrical scaling. Namely, Ñ(r⊥, x) is
not a function of two independent variables but rather a
function of the single variable τ = r⊥Qs(x). Here Qs(x)
stands for the saturation momentum scale.

The solution Ñ presented in Fig. 2 is obtained in two
steps. First, the initial conditions (2.5) are extrapolated to
long distances by a constant, which at very long distances
does not approach unity (such a procedure is not consis-
tent with scaling which is a purely dynamical property of
the evolution equation). Then a solution is obtained for
all x. At sufficiently low x (x ≤ 10−4) the initial condi-
tions are forgotten and the dynamics are governed by pure
evolution. In this region the geometrical scaling becomes
manifest. As a second step, we take the solution thus ob-
tained at x 	 10−6 and use geometrical scaling in order
to rescale this solution up to x = x0. The resulting curve
is now used for a new long distance extrapolation of the
initial condition (2.5). The initial condition obtained in
this way provides a smooth extrapolation of the Glauber
formula to unity at very large distances.

Finally, we note that the procedure presented above
can be used for a large distance extrapolation of the gluon
density at high x > x0.
(7) b dependence of the solution. We assume that the so-
lution of (2.1) preserves the same b dependence as intro-
duced by the initial conditions (2.5):

Ñ(r⊥, x; b) = (1 − e−κ(x,r⊥)S(b)), (4.24)

where κ is related to the b = 0 solution

κ(x, r⊥) = − ln(1 − Ñ(r⊥, x, b = 0)). (4.25)

A factorized form of the b dependence was recently
advocated in [40]. The ansatz is quite good at moder-
ate x, though it becomes worse at smaller x [1,30]. The
overall uncertainty of the approximation can be roughly
estimated not to exceed 10%–20%.

We now proceed with the evaluation of the dipole cross
section (2.2). Having assumed (4.24), the dipole cross sec-
tion has the form

σdipole = 2πR2 [ln(κ) + E1(κ) + γ] . (4.26)

In (4.26) γ denotes the Euler constant, while E1 is
the exponential integral function. The expression (4.26)
predicts the lnκ growth of the dipole cross section, which
is in agreement with the conclusions presented in [28].
(8) Continuity at x = x0. In Sect. 2 we discussed the con-
tinuity of the function N at x = x0. One of the ways for
its realization is to require ∆N(r⊥, x0) = 0 which is ful-
filled when N(r⊥, x0) = Ñ(r⊥, x0). However, Ñ(r⊥, x0)
is given by the GM formula (2.5) plus the large distance
extrapolation while N ∼ αSr

2
⊥xG

DGLAP. Formally they
do not coincide though numerical differences are not sig-
nificant. Nevertheless, we decided to force the equality
N(r⊥, x0) = Ñ(r⊥, x0). To achieve this, the following
changes were introduced in (2.12):

(a) N → GM ;

(b)
∂ñ(r⊥, x0)
∂ ln(1/r2⊥)

→ CFαS

π

∫ 1

x0

dzPg→g(z)n(r⊥, x0/z).

The above changes are minor. Practically they affect
only the long distance behavior of the theory for x ≥ x0,
which is not significant.
(9) Solution of (2.12). Having obtained the function Ñ
we can search for the correction ∆N . Equation (2.12) is
solved similarly to (2.1), but with a fixed grid in rapidity
and dynamical step in r⊥. The initial conditions (2.13)
are set at r⊥ = r⊥0. The parameter r⊥0 is an adjust-
ing parameter to be determined from the optimal fit. The
dashed curves in Fig. 2 show the correcting function ∆N
corresponding to r⊥0 = 2 GeV−1.

The function ∆N obtained displays all the qualita-
tive properties deduced analytically. As expected, start-
ing from zero at r⊥0 the function ∆N decreases until it
reaches a minimum and then it increases to zero again
at asymptotically short distances. The ratio |∆N |/Ñ in-
creases permanently during the evolution reaching about
70% at the edge of our kinematic domain. Below x 	 10−3

this ratio is almost x independent.

5 Results

5.1 Fitting strategy

Low x F2 data are used to determine the parameters of our
model. The experimental data for x ≤ 10−2 are taken from



418 E. Gotsman et al.: Towards a new global QCD analysis: low x DIS data from non-linear evolution

0.1

0.2

0.3

0.4

0.5

0.2

0.4

0.6

0.8

0.5

1

0.5

1

a

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

0.5

1

1.5

b

Fig. 3a,b. Fit to the F2 structure function
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Fig. 4a,b. The logarithmic derivative ∂F2/∂ ln Q2
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Fig. 5a,b. The logarithmic derivative λ = ∂ ln F2/∂ ln 1/x

the ZEUS [41,42], H1 [43], and E665 [44] experiments. The
overall number of points is about 345. We actually use the
very same data as [6]. Statistical and systematic errors are
added in quadrature. Whole data sets are allowed to be
shifted within the overall normalization uncertainty. We
use this freedom to shift the low Q2 ZEUS data down by
2% and E665 data by 3%. The H1 data were shifted up
by 3%.

Our fitting procedure is divided in two steps. First,
recall that in our approach the function Ñ is supposed
to describe correctly the kinematical region of very low x

and large r⊥. The only fitting parameter for Ñ is R2. We
vary R2 in order to find an optimal fit for the F2 subset
of the data below Q2 	 1 GeV2 (about 100 points). The
resulting χ2/df = 1.2 is achieved for R2 = 3.1 GeV−2.

The function Ñ obtained by fitting low Q2 subset of
the data, is not capable of describing all data points. The
fit to all points leads to χ2/df > 3, which is not good. The
reason for this mismatch is certainly due to the absence
of the DGLAP kernel in the evolution of Ñ . In order to
solve this problem we switch on the DGLAP correction
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∆N which is our second step on the way to the optimal
fit. To achieve this (2.12) is solved.

For ∆N the only fitting parameter is the position r⊥0
at which the initial conditions (2.13) are set. It appears,
however, that the variation of this position acts as a fine
tuning parameter only. The optimal fit is realized at r⊥0 =
2 GeV−1 in total agreement with the underlying theoreti-
cal assumptions.

5.2 Fit to the F2 data

In this subsection we present the results of the fit to the
low x F2 data. The structure function F2 is given by a
sum of three contributions:

F2 = F̃2 +∆F + FNSQ
2 , (5.27)

where the first two terms are given by (2.3) and (2.14).
These terms take into account only the gluon contribu-
tion to F2. In fact, gluons are related to singlet quark
distributions. The third term in (5.27) takes into account
contributions of the non-singlet quark distributions:

FNSQ
2 =

∑
i=u,d

e2i q
V
i . (5.28)

At the present stage of our research we “borrow” the
valence quark distributions (qV

i ) from the LO CTEQ6
parametrization. It is important to note, however, that
these distributions decrease with decreasing x, and are of
practically no significance below x 	 10−3. In the future
we plan to develop a fully self-consistent approach without
relying on any known parameterization.

Our central results are presented in Fig. 3 for small
Q2 (a) and for large Q2 (b). The solid line is the best
fit obtained with resulting χ2/df = 1. The dashed line
is a result obtained without the DGLAP correction ∆N
(χ2/df > 3).

The quality of our fit is of the same level as of [6]. A
fit of similar quality was also obtained on the basis of a
new scaling saturation model of [45].

5.3 dF2/d(ln Q2)

The logarithmic derivative of F2 with respect to lnQ2 is
presented in Fig. 4 at fixed Q2 (a) and at fixed x (b). Only
a comparison with the H1 data [43] is shown though a
similar ZEUS measurement exists as well [46]. Note that
these experimental data were not taken into account in
the fitting procedure.

5.4 d ln F2/d(ln 1/x)

In this subsection we present our computation of λ ≡
∂ lnF2/∂(ln 1/x). A comparison with the H1 data [47] is
shown in Fig. 5 at fixed Q2 (a) and at fixed x (b). Figure 6
presents our prediction for λ at very low x and small values
of Q2. At fixed Q2, λ decreases with decreasing x tending

Fig. 6. The logarithmic derivative λ = ∂ ln F2/∂ ln 1/x plotted
at low Q2 and very low x

to zero in agreement with the unitarity constraint. At Q2

well below 1 GeV2 and x 	 10−6, λ 	 0.08 ± 0.01. This
value of λ coincides with the “soft pomeron” intercept of
the Donnachie and Landshoff model (DL) [35]. It is im-
portant to stress that the result is obtained on the basis
of perturbative QCD. The only non-perturbative input in
our approach is the freezing of αS at large distances. In
fact, it was conjectured in [48] that the soft pomeron may
appear in perturbative QCD due to freezing of αS.

5.5 Prediction for FL at HERA

In this subsection we present our prediction for the FL

structure function. The result is obtained on the basis
of the function Ñ (longitudinal part of F̃2) (Fig. 7). The
function ∆N is obtained within the leading logarithmic
approximation, and in this approximation it does not con-
tribute to FL. Note that at the relatively high values of
x 	 10−2–10−3 our prediction may be slightly underes-
timated, since the contribution of the valence quarks is
neglected.

5.6 Predictions for LHC and THERA

5.6.1 Gluon density

From the solutions obtained we can compute the gluon
density. To achieve this goal we rely on the Mueller’s for-
mula [22] which relates the density to the elastic dipole–
target amplitude:

xG(x,Q2) =
4
π3

∫ 1

x

dx′

x′

∫ r⊥0

4/Q2

dr2⊥
r4⊥

∫
d2b2N(r⊥, x′).

(5.29)
Practically we integrate in x′ up to x0 and then add
xGDGLAP(x0). Figure 8 presents a comparison between
the gluon density obtained from (5.29) and xGCTEQ. At
very low x a significant damping of the density can be
observed compared to the DGLAP predictions.
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Fig. 7. Prediction for the FL structure function at
the HERA kinematics. The values of Q2 are given in
GeV2

Fig. 8. The gluon density xG is plotted versus x at fixed Q2. The solid line corresponds to (5.29) while the dashed line is for
xGDGLAP (CTEQ6)

5.6.2 F2

The obtained model allows an extrapolation of the parton
distributions to very high energies. Figure 9 presents our
predictions for THERA and LHC kinematics.

6 Discussion

6.1 The transverse hadron size R2

As was pointed out above the optimal fit is achieved for
R2 = 3.1 GeV−2. Such a low value requires understanding
and below we present several explanatory arguments.
(1) First of all, the Glauber–Mueller formula of (2.6) can
be used for a proton target with great reservations because
contrary to the nuclear case, large inelastic diffraction is
present. This process not only has a considerable cross
section but also a quite different impact parameter depen-
dence corresponding to the small value of the radius. The
effect of two different radii is in agreement with the HERA

data on elastic and inelastic J/Ψ photo-production [49].
In the simple additive quark model (AQM) there are two
kinds of processes: rescattering of a dipole off one quark
and rescattering due to the interaction with two or even
three constituent quarks. The admixture of the inelastic
diffractive processes can be taken into account (see [50])
by effective decreasing of R2 in (2.6) from 10 GeV−2 to
5 GeV−2.
(2) Second, in (2.6) we used the Gaussian parameteriza-
tion for the b dependence. On the other hand, the data
on J/Ψ production require assuming the profile function
of the form [51]

S(b) =
1

πR2

√
8b
R

K1

(√
8b
R

)
, (6.30)

which corresponds to the power-like (dipole) form factor
in the momentum transfer representation:

Fdipole(t) =
1(

1 − 1
8
R2t

)2 . (6.31)
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Fig. 9. Prediction for the F2 structure function at
the LHC kinematics. The values of Q2 are given in
GeV2

Fdipole(t) describe a system with the same radius R as the
Gaussian form factor. In the t-representation the latter
looks like

Fexp(t) = e(1/4)R2t. (6.32)

Practically, the solution to the non-linear BK evolution
equation is obtained at b = 0. Note that Sdipole(b = 0) =
2SGaussian(b = 0) and this difference can be interpreted as
an effective decrease in the value of R2. In fact, a relatively
good fit to the low x data can be obtained with the dipole
profile function at R2 	 4.5 GeV−2.
(3) In (2.6) we use the following expression for the dipole–
proton cross section:

σdipole =
αSπ

2r2⊥
Nc

xG

(
x,

4
r2⊥

)
, (6.33)

However, the expression (6.33) is an approximation valid
for small values of the anomalous dimension γ only. The
correct expression for the cross section was obtained
in [52]:

σdipole(r⊥, x) =
16CF

N2
c − 1

π2

×
∫
φ(x, l2)(1 − eilr⊥)

αS(l2)
2π

d2l

l2
, (6.34)

with φ ≡ ∂xG(x, l2)/∂l2 being an unintegrated gluon den-
sity [17]. The gluon density xG ≡ xGDGLAP is a solution
of the DGLAP equation

xG(x, l2) =
1

2πi

∫
C

dωx−ωg(ω)eγ(ω) ln l2 . (6.35)
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Fig. 10. The dipole cross section is plotted versus r⊥ at x =
10−2 for (6.37) (upper curve) and for (6.33) (lower curve). αS =
0.2 for this plot

Substituting (6.35) into (6.34) and performing the l inte-
gration we obtain

σdipole =
4αSπ

2

Nc

∫
C

dω
2πi

g(ω)eω ln(1/x)

× 1
1 − γ(ω)

(
r2⊥
4

)1−γ(ω)
Γ (1 + γ(ω))
Γ (2 − γ(ω))

. (6.36)

It turns out that (6.36) can be approximately rewritten in
the very compact form

σdipole =
4αSπ

2

Nc

∫ r2
⊥/4

dr′2
⊥xG

(
x,

1
r′2
⊥

)
. (6.37)

Equation (6.37) and (6.33) are quite different (see
Fig. 10) which again can be taken into account by reducing
the value of R2.
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Fig. 11. Geometrical scaling. Ñ versus τ = r⊥Qs(x)

6.2 Geometrical scaling and saturation scale

We briefly discuss the issue of the geometrical scaling
displayed by the function Ñ . Namely Ñ = Ñ(τ) with
τ ≡ r⊥Qs(x). The phenomenon of geometrical scaling for
a solution of the BK equation was studied analytically
in [28] and established numerically in [29,39,31]. Recall
that in the extrapolation of the initial conditions to the
very long distances we relied on the scaling property. The
function Ñ is displayed as a function of τ in Fig. 11.

Three comments are in order.
(1) Figure 11 is obtained assuming Qs(x = 10−3)=1 GeV.
(2) Within 10% accuracy the scaling holds for τ ≥ 1. For
smaller τ there is a noticeable scaling violation depend-
ing on the value of x. In fact, a more significant scaling
violation is found in the perturbative region compared to
the results of [39]. This discrepancy is likely to be due
to the differences between αS: in [39], a constant value of
αS = 0.25 was used, while the present work is done with
a running αS. It was argued in [53,54] that the running
of αs provides an important source for scaling breakdown,
when penetrating the region of perturbative QCD.
(3) The x dependence of the saturation scale can be inves-
tigated using the scaling property. Parameterizing Qs ∼
x−q we find q = 0.18 ± 0.02. This value is about half the
size of previous estimates of [30,39]. The latter were ob-
tained with the constant αS = 0.25 and the decrease of q
is doubtless due to running of αs. Indeed, in [1] we showed
that in the case of running αS, the saturation scale grows
much slower than the fixed constant case. It is certainly
interesting to investigate the dependence of q on αs.

6.3 Comparison with the GBW model

It was mentioned in the introduction that the solution to
the BK equation (Ñ) in describing the low x data plays
the same role as the original GBW saturation model. Con-
sequently, it is of interest to compare these two models.
Figure 12 shows the dipole cross section (4.26) plotted to-
gether with the one of the GBW model. Note that due to
the impact parameter integration the dipole cross section
(4.26) grows with decreasing x (logarithmically) while the
GBW model reaches a saturation value.

As a function of r⊥ the behavior of the curves in Fig. 12
is quite different. This is a numerical coincidence; after the
r⊥ integration these dipole cross sections (improved by the
DGLAP corrections) lead to a good description of the very
same data.

6.4 Shortcomings of our approach

We would like to list several shortcomings of our approach
and indicate future steps for their elimination.
(1) One of the theoretical difficulties lies in the fact that
∆N → const(x) < 0 at low x and fixed b. In spite of the
fact that this limit does not contradict the unitarity con-
straints, it looks very unnatural that the dipole amplitude
does not reach the maxim possible value Ñ+∆N = 1. In-
deed, this fact is an artifact of our approximation, namely,
of the oversimplified form of the non-linear term in (2.9)
in which 1/z should also be replaced by the full kernel
Pg→g(z). In the future we plan to treat this problem. Here,
we want to recall that after integration over b,

∫
d2b∆N

becomes much smaller than
∫

d2bÑ due to the logarith-
mical growth of the latter as a function of x.
(2) Our results are based on the CTEQ parametrization,
which enters our calculations through the gluon distribu-
tion at x ≥ 10−2 and valence quark distributions.

We attempted to switch to another parameterization
(GRV98 [55]) but failed to reproduce a very good fit
(χ2/df 	 2.3). The main reason for this failure is that
at x0 = 10−2 and very short distances the gluon of GRV
is smaller than the CTEQ gluon, by about 10%. This dif-
ference cannot be practically eliminated by adjusting of
our fitting parameter R. Yet, the treatment of the dipole
cross section in the from presented by (6.37) is likely to
improve the situation.

At present, we have to conclude that our current re-
sults are parameterization dependent. This requires us to
reconsider the problem by producing our own DGLAP fit
of the high x data which would also include the quark
distributions.
(3) One of the central uncertainities of our approach is
in the impact parameter dependence of the function Ñ .
The ansatz (4.24) is certainly not fully correct though it
preserves the main properties of the b dependence. In our
approach, the uncertainty due to this ansatz was partly
hidden in the fitting of the effective target size R2. In
order to eliminate this problem it is highly desirable to
solve (2.1), including the full b dependence of the solution.

7 Summary

A new approach to DIS based on a summation of the
high twist contributions in the leading lnx approxima-
tion is developed. The first step implies a solution of the
Balitsky–Kovchegov non-linear evolution equation. Sec-
ondly, a linear evolution equation for the correcting func-
tion which incorporates the correct DGLAP kernel in the
leading lnQ2 approximation is derived. It is important to
stress that both equations are based on QCD and derived
in several approximations.

The BK equation (2.1) is solved numerically by the
method of evolution. The solution leads to a saturation
of the function Ñ at large distances. However, the dipole
cross section obtained is not saturated as a function of
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Fig. 12. The comparison between σdipole, see (4.26), (solid curve) and the dipole cross section of the GBW model (dashed
curve)

x. Due to the b integration it grows logarithmically with
decreasing x in contrast to the GBW saturation model.

The DGLAP correcting function ∆N was found as a
solution of (2.12). In agreement with the analytical esti-
mates this function contributes at moderate values of x
and provides a correction to the main contribution due to
Ñ .

As a main goal of this work, the low x F2 data are
fitted in the whole kinematic region both for small and
large photon virtualities Q2. The resulting χ2/df = 1. We
wish to emphasize that our fit was made using two fitting
parameters, the effective target size R2, and the scale r⊥0
at which the DGLAP correction is switched on. The latter
is only a fine tunning parameter. There are of course ad-
ditional parameters which appear in our formalism, such
as the scale at which we freeze the running coupling con-
stant to have the value ≈ 0.5, the maximal value of the
transverse distance r⊥ which is taken to be 2 fm, and the
CTEQ6 pdfs. These have not been varied, but they have
been taken as constants as discussed explicitly in the text.
This fit determined the optimal model which is applied to
compute logarithmic derivatives of F2. Several predictions
for the THERA and LHC are presented.

Analyzing λ ≡ ∂ lnF2/∂(ln 1/x) at very low x and
small photon virtualities we found λ 	 0.08 which coin-
cides with the “soft pomeron” intercept of the DL model.
It is important to stress that this soft pomeron occurs
as an effective result of multiple hard (BFKL) pomeron
rescattering. Except for freezing αS, no soft physics is in-
troduced in our approach.

The model obtained opens the possibility to address
many questions in high energy phenomenology. At present
we are working on DIS off nuclei, as well as other exclusive
processes such as of J/ψ production.
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